Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 8: 971, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238306

RESUMO

Introduction: It is suggested that an altered microenvironment in the gut wall alters communication along a mast cell nerve axis. We aimed to record for the first time signaling between mast cells and neurons in intact human submucous preparations. Methods: We used the Ca2+ sensitive dye Fluo-4 AM to simultaneously image changes in intracellular calcium [Ca+2]i (%ΔF/F) in neurons and mast cells. Data are presented as median with interquartile ranges (25/75%). Results: We recorded nerve responses in 29 samples upon selective activation of 223 mast cells by IgE receptor cross linking with the antibody mAb22E7. Mast cells responded to mAb22E7 with a median [Ca+2]i increase of 20% (11/39) peaking 90 s (64/144) after the application. Only very few neurons responded and the median percentage of responding neuronal area was 0% (0/5.9). Mast cell activation remained in the presence of the fast sodium channel blocker tetrodotoxin. Specific neuronal activation by transmural electrical field stimulation (EFS) in 34 samples evoked instantaneously [Ca+2]i signals in submucous neurons. This was followed by a [Ca+2]i peak response of 8%ΔF/F (4/15) in 33% of 168 mast cells in the field of view. The mast cell response was abolished by the nerve blocker tetrododoxin, reduced by the Calcitonin Gene-Related Peptide receptor 1 antagonist BIBN-4096 and the Vasoactive Intestinal Peptide receptor antagonist PG97-269, but not by blockade of the neurokinin receptors 1-3. Conclusion: The findings revealed bidirectional signaling between mast cells and submucous neurons in human gut. In our macroscopically normal preparations a nerve to mast cell signaling was very prominent whereas a mast cell to nerve signaling was rather rare.

2.
PLoS One ; 12(8): e0182461, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813464

RESUMO

The auditory cortex is an essential center for sound localization. In echolocating bats, combination sensitive neurons tuned to specific delays between call emission and echo perception represent target distance. In many bats, these neurons are organized as a chronotopically organized map of echo delay. However, it is still unclear to what extend these neurons can process directional information and thereby form a three-dimensional representation of space. We investigated the representation of three-dimensional space in the auditory cortex of Phyllostomus discolor. Specifically, we hypothesized that combination sensitive neurons encoding target distance in the AC can also process directional information. We used typical echolocation pulses of P. discolor combined with simulated echoes from different positions in virtual 3D-space and measured the evoked neuronal responses in the AC of the anesthetized bats. Our results demonstrate that combination sensitive neurons in the AC responded selectively to specific positions in 3-D space. While these neurons were sharply tuned to echo delay and formed a precise target distance map, the neurons' specificity in azimuth and elevation depended on the presented sound pressure level. Our data further reveal a topographic distribution of best elevation of the combination sensitive neurons along the rostro-caudal axis i.e., neurons in the rostral part of the target distance map representing short delays prefer elevations below the horizon. Due to their spatial directionality and selectivity to specific echo delays representing target distance, combination sensitive cortical neurons are suited to encode three-dimensional spatial information.


Assuntos
Córtex Auditivo/fisiologia , Quirópteros/fisiologia , Ecolocação , Animais , Fenômenos Eletrofisiológicos , Masculino , Neurônios/fisiologia
3.
J Neurophysiol ; 117(6): 2113-2124, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28275060

RESUMO

Echolocating bats use echoes of their sonar emissions to determine the position and distance of objects or prey. Target distance is represented as a map of echo delay in the auditory cortex (AC) of bats. During a bat's flight through a natural complex environment, echo streams are reflected from multiple objects along its flight path. Separating such complex streams of echoes or other sounds is a challenge for the auditory system of bats as well as other animals. We investigated the representation of multiple echo streams in the AC of anesthetized bats (Phyllostomus discolor) and tested the hypothesis that neurons can lock on echoes from specific objects in a complex echo-acoustic pattern while the representation of surrounding objects is suppressed. We combined naturalistic pulse/echo sequences simulating a bat's flight through a virtual acoustic space with extracellular recordings. Neurons could selectively lock on echoes from one object in complex echo streams originating from two different objects along a virtual flight path. The objects were processed sequentially in the order in which they were approached. Object selection depended on sequential changes of echo delay and amplitude, but not on absolute values. Furthermore, the detailed representation of the object echo delays in the cortical target range map was not fixed but could be dynamically adapted depending on the temporal pattern of sonar emission during target approach within a simulated flight sequence.NEW & NOTEWORTHY Complex signal analysis is a challenging task in sensory processing for all animals, particularly for bats because they use echolocation for navigation in darkness. Recent studies proposed that the bat's perceptional system might organize complex echo-acoustic information into auditory streams, allowing it to track specific auditory objects during flight. We show that in the auditory cortex of bats, neurons can selectively respond to echo streams from specific objects.


Assuntos
Córtex Auditivo/fisiologia , Ecolocação/fisiologia , Neurônios/fisiologia , Percepção Espacial/fisiologia , Estimulação Acústica , Potenciais de Ação , Anestesia , Animais , Quirópteros , Feminino , Microeletrodos , Navegação Espacial/fisiologia , Realidade Virtual
4.
Eur J Neurosci ; 44(9): 2685-2697, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600873

RESUMO

The midbrain superior colliculus (SC) commonly features a retinotopic representation of visual space in its superficial layers, which is congruent with maps formed by multisensory neurons and motor neurons in its deep layers. Information flow between layers is suggested to enable the SC to mediate goal-directed orienting movements. While most mammals strongly rely on vision for orienting, some species such as echolocating bats have developed alternative strategies, which raises the question how sensory maps are organized in these animals. We probed the visual system of the echolocating bat Phyllostomus discolor and found that binocular high acuity vision is frontally oriented and thus aligned with the biosonar system, whereas monocular visual fields cover a large area of peripheral space. For the first time in echolocating bats, we could show that in contrast with other mammals, visual processing is restricted to the superficial layers of the SC. The topographic representation of visual space, however, followed the general mammalian pattern. In addition, we found a clear topographic representation of sound azimuth in the deeper collicular layers, which was congruent with the superficial visual space map and with a previously documented map of orienting movements. Especially for bats navigating at high speed in densely structured environments, it is vitally important to transfer and coordinate spatial information between sensors and motor systems. Here, we demonstrate first evidence for the existence of congruent maps of sensory space in the bat SC that might serve to generate a unified representation of the environment to guide motor actions.


Assuntos
Percepção Auditiva , Ecolocação , Colículos Superiores/fisiologia , Percepção Visual , Animais , Quirópteros
5.
J Exp Biol ; 219(Pt 12): 1793-7, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27045094

RESUMO

Flying animals need to react fast to rapid changes in their environment. Visually guided animals use optic flow, generated by their movement through structured environments. Nocturnal bats cannot make use of optic flow, but rely mostly on echolocation. Here, we show that bats exploit echo-acoustic flow to negotiate flight through narrow passages. Specifically, bats' flight between lateral structures is significantly affected by the echo-acoustic salience of those structures, independent of their physical distance. This is true even though echolocation, unlike vision, provides explicit distance cues. Moreover, the bats reduced the echolocation sound levels in stronger flow, probably to compensate for the increased summary target strength of the lateral reflectors. However, bats did not reduce flight velocity under stronger echo-acoustic flow. Our results demonstrate that sensory flow is a ubiquitous principle for flight guidance, independent of the fundamentally different peripheral representation of flow across the senses of vision and echolocation.


Assuntos
Quirópteros/fisiologia , Ecolocação , Voo Animal , Comportamento Predatório , Acústica , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...